Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
International Journal of Medical Engineering and Informatics ; 15(2):131-138, 2022.
Article in English | EMBASE | ID: covidwho-2318405

ABSTRACT

The COVID-19 outbreak has fashioned to severe threat to each and every individual in social and economic aspects in the country. This required improved wisdom to know how it is different and dominant, to diagnose and determine effective vaccines to avoid the transmission of these deadly causative agents. From this review, the probable property of these deadly transmissible viruses is related to that of SARS-CoV-2 as a fright zone of viruses. It also provides some sparks about effective and accurate diagnosis and treatment strategies. The effective management and control of panic zone of virus (PZV) and SARS-CoV-2 are more important to reduce the pandemic situation.Copyright © 2023 Inderscience Enterprises Ltd.

2.
J Basic Microbiol ; 63(5): 519-529, 2023 May.
Article in English | MEDLINE | ID: covidwho-2312806

ABSTRACT

Bovine coronavirus (BCoV) is a member of pathogenic Betacoronaviruses that has been circulating for several decades in multiple host species. Given the similarity between BCoV and human coronaviruses, the current study aimed to review the complete genomes of 107 BCoV strains available on the GenBank database, collected between 1983 and 2017 from different countries. The maximum-likelihood based phylogenetic analysis revealed three main BCoV genogroups: GI, GII, and GIII. GI is further divided into nine subgenogroups: GI-a to GI-i. The GI-a to GI-d are restricted to Japan, and GI-e to GI-i to the USA. The evolutionary relationships were also inferred using phylogenetic network analysis, revealing two major distinct networks dominated by viruses identified in the USA and Japan, respectively. The USA strains-dominated Network Cluster includes two sub-branches: France/Germany and Japan/China in addition to the United States, while Japan strains-dominated Network Cluster is limited to Japan. Twelve recombination events were determined, including 11 intragenogroup (GI) and one intergenogroup (GII vs. GI-g). The breakpoints of the recombination events were mainly located in ORF1ab and the spike glycoprotein ORF. Interestingly, 10 of 12 recombination events occurred between Japan strains, one between the USA strains, and one from intercontinental recombination (Japan vs. USA). These findings suggest that geographical characteristics, and population density with closer contact, might significantly impact the BCoV infection and co-infection and boost the emergence of more complex virus lineages.


Subject(s)
Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Animals , Cattle , Humans , Phylogeny , Likelihood Functions , Coronavirus Infections/epidemiology , Recombination, Genetic , Cattle Diseases/epidemiology
3.
J Biomol Struct Dyn ; : 1-21, 2023 May 11.
Article in English | MEDLINE | ID: covidwho-2312125

ABSTRACT

The advent of influenza A (H1N1) drug-resistant strains led to the search quest for more potent inhibitors of the influenza A virus, especially in this devastating COVID-19 pandemic era. Hence, the present research utilized some molecular modelling strategies to unveil new camphor imine-based compounds as anti-influenza A (H1N1) pdm09 agents. The 2D-QSAR results revealed GFA-MLR (R2train = 0.9158, Q2=0.8475) and GFA-ANN (R2train = 0.9264, Q2=0.9238) models for the anti-influenza A (H1N1) pdm09 activity prediction which have passed the QSAR model acceptability thresholds. The results from the 3D-QSAR studies also revealed CoMFA (R2train =0.977, Q2=0.509) and CoMSIA_S (R2train =0.976, Q2=0.527) models for activity predictions. Based on the notable information derived from the 2D-QSAR, 3D-QSAR, and docking analysis, ten (10) new camphor imine-based compounds (22a-22j) were designed using the most active compound 22 as the template. Furthermore, the high predicted activity and binding scores of compound 22j were further justified by the high reactive sites shown in the electrostatic potential maps and other quantum chemical calculations. The MD simulation of 22j in the active site of the influenza hemagglutinin (HA) receptor confirmed the dynamic stability of the complex. Moreover, the appraisals of drug-likeness and ADMET properties of the proposed compounds showed zero violation of Lipinski's criteria with good pharmacokinetic profiles. Hence, the outcomes in this work recommend further in-depth in vivo and in-vitro investigations to validate these theoretical findings.Communicated by Ramaswamy H. Sarma.

4.
Nano Lett ; 23(8): 3377-3384, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-2317386

ABSTRACT

Many cellular processes involve the lateral organization of integral and peripheral membrane proteins into nanoscale domains. Despite the biological significance, the mechanisms that facilitate membrane protein clustering into nanoscale lipid domains remain enigmatic. In cells, the analysis of membrane protein phase affinity is complicated by the size and temporal nature of ordered and disordered lipid domains. To overcome these limitations, we developed a method for delivering membrane proteins from transfected cells into phase-separated model membranes that combines optical trapping with thermoplasmonic-mediated membrane fusion and confocal imaging. Using this approach, we observed clear phase partitioning into the liquid disordered phase following the transfer of GFP-tagged influenza hemagglutinin and neuraminidase from transfected cell membranes to giant unilamellar vesicles. The generic platform presented here allows investigation of the phase affinity of any plasma membrane protein which can be labeled or tagged with a fluorescent marker.


Subject(s)
Influenza, Human , Spike Glycoprotein, Coronavirus , Humans , Membrane Fusion , Cell Membrane/metabolism , Membrane Proteins/metabolism , Lipids
5.
World's Veterinary Journal ; 13(1):12-25, 2023.
Article in English | EMBASE | ID: covidwho-2306340

ABSTRACT

Adenovirus vectors have been employed to develop a vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for curtailing the Covid-19 pandemic spreading. Many different viral vectors have been mainly targeting the SARS-CoV-2 spike (S) protein as an antigen. Spike (S) protein is comprised of S1 and S2 subunits, in which the receptor-binding domain (RBD) of S1 is responsible for recognizing and engaging with its host cellular receptor protein angiotensin-converting enzyme 2 (ACE2), S2 accounts for membrane fusion of virus and host cell. Chimpanzee adenovirus was also used as a vector vaccine for SARS-CoV-2 (ChAdSARS-CoV-2-S) by intramuscular injection, and intranasal administration has been tested. Adenovirus vector-based vaccines are the most advanced, with several vaccines receiving Emergency Use Authorization (EUA). It was shown that rhesus macaques were protected from SARS-CoV-2 challenge after a month of being vaccinated with ChAd-SARS-CoV-2-S. A single intranasal or two intramuscular ChAd-SARSCoV-2-S vaccines could induce humoral antibodies and T cell responses to protect the upper and lower respiratory tract against SARS-CoV-2. As the effectiveness was demonstrated in non-human primates, ChAd-SARS-CoV-2-Sa potential option for preventing SARS-CoV-2 infection in humans. However, detecting novel more transmissible and pathogenic SARS-CoV-2 variants added concerns about the vaccine efficacy and needs monitoring. Moreover, the cause of recently documented rare cases of vaccine indicated immune thrombotic thrombocytopenia. This review article provided details for the adenovirus vector vaccine for SARS-CoV-2 in humans and tried to provide solutions to the adenovirus vector hemagglutinin issueCopyright © 2023, World's Veterinary Journal.All Rights Reserved.

6.
Journal of Liver Transplantation ; 7 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2297031
7.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: covidwho-2292459

ABSTRACT

The fusion of viral and cell membranes is one of the basic processes in the life cycles of viruses. A number of enveloped viruses confer fusion of the viral envelope and the cell membrane using surface viral fusion proteins. Their conformational rearrangements lead to the unification of lipid bilayers of cell membranes and viral envelopes and the formation of fusion pores through which the viral genome enters the cytoplasm of the cell. A deep understanding of all the stages of conformational transitions preceding the fusion of viral and cell membranes is necessary for the development of specific inhibitors of viral reproduction. This review systematizes knowledge about the results of molecular modeling aimed at finding and explaining the mechanisms of antiviral activity of entry inhibitors. The first section of this review describes types of viral fusion proteins and is followed by a comparison of the structural features of class I fusion proteins, namely influenza virus hemagglutinin and the S-protein of the human coronavirus.


Subject(s)
Coronavirus Infections , Coronavirus , Orthomyxoviridae , Humans , Viral Fusion Proteins/metabolism , Coronavirus/metabolism , Hemagglutinins/metabolism , Spike Glycoprotein, Coronavirus/genetics , Membrane Fusion , Orthomyxoviridae/metabolism , Virus Internalization
8.
Microbiology Research ; 12(3):663-682, 2021.
Article in English | EMBASE | ID: covidwho-2253973

ABSTRACT

Livestock products supply about 13 percent of energy and 28 percent of protein in diets consumed worldwide. Diarrhea is a leading cause of sickness and death of beef and dairy calves in their first month of life and also affecting adult cattle, resulting in large economic losses and a negative impact on animal welfare. Despite the usual multifactorial origin, viruses are generally involved, being among the most important causes of diarrhea. There are several viruses that have been confirmed as etiological agents (i.e., rotavirus and coronavirus), and some viruses that are not yet confirmed as etiological agents. This review summarizes the viruses that have been detected in the enteric tract of cattle and tries to deepen and gather knowledge about them.Copyright © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

9.
The Lancet Infectious diseases ; 17, 2023.
Article in English | EMBASE | ID: covidwho-2286725

ABSTRACT

BACKGROUND: Nirsevimab is an extended half-life monoclonal antibody to the respiratory syncytial virus (RSV) fusion protein that has been developed to protect infants for an entire RSV season. Previous studies have shown that the nirsevimab binding site is highly conserved. However, investigations of the geotemporal evolution of potential escape variants in recent (ie, 2015-2021) RSV seasons have been minimal. Here, we examine prospective RSV surveillance data to assess the geotemporal prevalence of RSV A and B, and functionally characterise the effect of the nirsevimab binding-site substitutions identified between 2015 and 2021. METHOD(S): We assessed the geotemporal prevalence of RSV A and B and nirsevimab binding-site conservation between 2015 and 2021 from three prospective RSV molecular surveillance studies (the US-based OUTSMART-RSV, the global INFORM-RSV, and a pilot study in South Africa). Nirsevimab binding-site substitutions were assessed in an RSV microneutralisation susceptibility assay. We contextualised our findings by assessing fusion-protein sequence diversity from 1956 to 2021 relative to other respiratory-virus envelope glycoproteins using RSV fusion protein sequences published in NCBI GenBank. FINDINGS: We identified 5675 RSV A and RSV B fusion protein sequences (2875 RSV A and 2800 RSV B) from the three surveillance studies (2015-2021). Nearly all (25 [100%] of 25 positions of RSV A fusion proteins and 22 [88%] of 25 positions of RSV B fusion proteins) amino acids within the nirsevimab binding site remained highly conserved between 2015 and 2021. A highly prevalent (ie, >40.0% of all sequences) nirsevimab binding-site Ile206Met:Gln209Arg RSV B polymorphism arose between 2016 and 2021. Nirsevimab neutralised a diverse set of recombinant RSV viruses, including new variants containing binding-site substitutions. RSV B variants with reduced susceptibility to nirsevimab neutralisation were detected at low frequencies (ie, prevalence <1.0%) between 2015 and 2021. We used 3626 RSV fusion-protein sequences published in NCBI GenBank between 1956 and 2021 (2024 RSV and 1602 RSV B) to show that the RSV fusion protein had lower genetic diversity than influenza haemagglutinin and SARS-CoV-2 spike proteins. INTERPRETATION: The nirsevimab binding site was highly conserved between 1956 and 2021. Nirsevimab escape variants were rare and have not increased over time. FUNDING: AstraZeneca and Sanofi.Copyright © 2023 Elsevier Ltd. All rights reserved.

10.
Coronaviruses ; 3(6) (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2280701

ABSTRACT

Fruit, vegetables, and green tea contain quercetin (a flavonoid). Some of the diet's most signifi-cant sources of quercetin are apples, onions, tomatoes, broccoli, and green tea. Antioxidant, anticancer, anti-inflammatory, antimicrobial, antibacterial, and anti-viral effects have been studied of quercetin. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, ribonucleic acid (RNA) polymer-ase, and other essential viral life-cycle enzymes are all prevented from entering the body by quercetin. Despite extensive in vitro and in vivo investigations on the immune-modulating effects of quercetin and vitamin C treatment. 3-methyl-quercetin has been shown to bind to essential proteins necessary to convert minus-strand RNA into positive-strand RNAs, preventing the replication of viral RNA in the cytoplasm. Quercetin has been identified as a potential SARS-CoV-2 3C-like protease (3CLpro) suppressor in recent molecular docking studies and in silico assessment of herbal medicines. It has been demonstrated that quercetin increases the expression of heme oxygenase-1 through the nuclear factor erythroid-related factor 2 (Nrf2) signal network. Inhibition of heme oxygenase-1 may increase bilirubin synthesis, an endoge-nous antioxidant that defends cells. When human gingival fibroblast (HGF) cells were exposed to lipo-polysaccharide (LPS), inflammatory cytokine production was inhibited. The magnesium (Mg+2) cation complexation improves quercetin free radical scavenging capacity, preventing oxidant loss and cell death. The main objective of this paper is to provide an overview of the pharmacological effects of quercetin, its protective role against SARS-CoV-2 infection, and any potential molecular processes.Copyright © 2022 Bentham Science Publishers.

11.
Molecular and Cellular Proteomics ; 21(8 Supplement):S86, 2022.
Article in English | EMBASE | ID: covidwho-2265001

ABSTRACT

Amino acid substitutions to viral proteins can create or remove glycosites. While research groups have published assignment of viral protein glycosylation, there remains little consensus regarding how to quantify the glycosylation changes that occur among viral variants. This is because glycosylation is inherently micro-and macro-heterogeneous, making rigorous comparison of the complete glycosylated structures of viral proteins a statistical problem. In response, we have compared glycoproteomics data acquisition and bioinformatics methods for producing confident measurements of glycosylation similarity. We compared glycoproteomics assignments and quantification from data acquired with data-dependent acquisition (DDA), scanning window data-independent acquisition (swDIA), and broad mass range data-independent acquisition coupled with ion mobility spectrometry (HDMSE), respectively. We compared DDA, swDIA, and HDMSE mass spectral data to assign and quantify (i) the five N-linked glycosylation sites of the glycoprotein standard alpha-1-acid glycoprotein (AGP), (ii) the 12 sites of an influenza A virus hemagglutinin (HA) and (iii) the 22 sites of SARS-CoV-2 spike protein. For all three proteins, we observed that swDIA provided greater depth of coverage for glycopeptide precursor ions compared with DDA. The performance improvement of swDIA was mitigated to a degree by the difficulty of assigning low abundance precursor ions confidently. For this reason, we compared the performance of HDMSE data acquired using the Waters Cyclic IMS instrument, for which there is no precursor isolation step and no need for scanned quadrupole windows. The Cyclic IMS instrument alternated scans corresponding to low and high collision energy in a collision cell located after the mobility chamber. The resulting collision energy aligned retention time curves contained no missing data.Wedeveloped a glycopeptide-aware deconvolution approach to assign the HDMSE data accurately. For this, we connected precursors and product ions according to the combined retention time (RT) and ion mobility (IM) profiles. Using this approach, we demonstrated that HDMSE improved the coverage of glycopeptides over swDIA and DDA.

12.
Biomedicines ; 11(3)2023 Mar 06.
Article in English | MEDLINE | ID: covidwho-2249010

ABSTRACT

The pandemic outbreak of human coronavirus is a global health concern that affects people of all ages and genders, but there is currently still no effective, approved and potential drug against human coronavirus, as many other coronavirus vaccines have serious side effects while the development of small antiviral inhibitors has gained tremendous attention. For this research, HE was used as a therapeutic target, as the spike protein displays a high binding affinity for both host ACE2 and viral HE glycoprotein. Molecular docking, pharmacophore modelling and virtual screening of 38,000 natural compounds were employed to find out the best natural inhibitor against human coronaviruses with more efficiency and fewer side effects and further evaluated via MD simulation, PCA, DCCR and MMGBSA. The lead compound 'Calceolarioside B' was identified on the basis of pharmacophoric features which depict favorable binding (ΔGbind -37.6799 kcal/mol) with the HE(5N11) receptor that describes positive correlation movements in active site residues with better stability, a robust H-bond network, compactness and reliable ADMET properties. The Fraxinus sieboldiana Blume plant containing the Calceolarioside B compound could be used as a potential inhibitor that shows a higher efficacy and potency with fewer side effects. This research work will aid investigators in the testing and identification of chemicals that are effective and useful against human coronavirus.

13.
J Biomol Struct Dyn ; : 1-16, 2022 Jan 31.
Article in English | MEDLINE | ID: covidwho-2275803

ABSTRACT

Coronaviruses (CoVs) belong to a group of RNA viruses that cause diseases in vertebrates including. Newer and deadlier than SARS CoV-2 are sought to appear in future for which the scientific community must be prepared with the strategies for their control. Spike protein (S-protein) of all the CoVs require angiotensin-converting enzyme2 (ACE2), while CoVs also require hemagglutinin-acetylesterase (HE) glycoprotein receptor to simultaneously interact with O-acetylated sialic acids on host cells, both these interactions enable viral particle to enter host cell leading to its infection. Target inhibition of viral S-protein and HE glycoprotein receptor can lead to a development of therapy against the SARS CoV-2. The proposition is to recognize molecules from the bundle of phytochemicals of medicinal plants known to possess antiviral potentials as a lead that could interact and mask the active site of, HE glycoprotein which would ideally bind to O-acetylated sialic acids on human host cells. Such molecules can be addressed as 'HE glycoprotein blockers'. A library of 110 phytochemicals from Withania somnifera, Asparagus racemosus, Zinziber officinalis, Allium sativum, Curcuma longa and Adhatoda vasica was constructed and was used under present study. In silico analysis was employed with plant-derived phytochemicals. The molecular docking, molecular dynamics simulations over the scale of 1000 ns (1 µs) and ADMET prediction revealed that the Withania somnifera (ashwagandha) and Asparagus racemosus (shatavari) plants possessed various steroidal saponins and alkaloids which could potentially inhibit the COVID-19 virus and even other CoVs targeted HE glycoprotein receptor.

14.
Viruses ; 15(2)2023 02 15.
Article in English | MEDLINE | ID: covidwho-2241426

ABSTRACT

It is clear that new approaches are needed to promote broadly protective immunity to viral pathogens, particularly those that are prone to mutation and escape from antibody-mediated immunity. Prototypic pathogens of this type are influenza and SARS-CoV-2, where the receptor-binding protein exhibits extremely high variability in its receptor-binding regions. T cells, known to target many viral proteins, and within these, highly conserved peptide epitopes, can contribute greatly to protective immunity through multiple mechanisms but are often poorly recruited by current vaccine strategies. Here, we have studied a promising novel pure enantio-specific cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (R-DOTAP), which was previously recognized for its ability to generate anti-tumor immunity through the induction of potent cytotoxic CD8 T cells. Using a preclinical mouse model, we have assessed an R-DOTAP nanoparticle adjuvant system for its ability to promote CD4 T cell responses to vaccination with recombinant influenza protein. Our studies revealed that R-DOTAP consistently outperformed a squalene-based adjuvant emulsion, even when it was introduced with a potent TLR agonist CpG, in the ability to elicit peptide epitope-specific CD4 T cells when quantified by IFN-γ and IL-2 ELISpot assays. Clinical testing of R-DOTAP containing vaccines in earlier work by others has demonstrated an acceptable safety profile. Hence, R-DOTAP can offer exciting opportunities as an immune stimulant for next-generation prophylactic recombinant protein-based vaccines.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Nanoparticles , Animals , Mice , Humans , Influenza, Human/prevention & control , Hemagglutinins , Squalene , CD4-Positive T-Lymphocytes , SARS-CoV-2 , Adjuvants, Immunologic , Vaccines, Synthetic , Vaccination , Cations
15.
J Herb Med ; 38: 100627, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2179070

ABSTRACT

Introduction: The National Administration of Traditional Chinese Medicine of the People's Republic of China (NATCM) and the State Administration of Traditional Chinese medicine (TCM) advocated a combination therapy of TCM and anti-viral drugs for novel coronavirus pneumonia (NCP) to improve the efficacy of clinical treatment. Methods: Forty-six patients diagnosed with NCP were sequentially divided into intent-to-treat population: the experimental group (combination of FuXi-Tiandi-Wuxing Decoction and anti-viral drugs; n = 23) and the control group (anti-viral drugs only) (n = 23). The two groups were compared in terms of duration of fever, cough symptom score, fatigue, appetite, dyspnea, out-of-bed activities, chest computer tomography (CT) recovery, virological clearance, average length of hospital stay, and clinical effective rate of drug. After 6 days of observation, patients from the control group were divided into as-treated population: experimental subgroup (n = 14) to obtain clinical benefit and control subgroup (n = 9). Results: There was a significant improvement in the duration of fever (1.087 ± 0.288 vs 4.304 ± 2.490), cough (0.437 ± 0.589 vs 2.435 ± 0.662; P < 0.05), chest CT evaluation (82.6% vs 43.4%; P < 0.05), and virological clearance (60.8% vs 8.7%; P < 0.05) in patients of the experimental group compared with patients in the control group. Further observation in as-treated population reported that cough (0.742 ± 0.463 vs 1.862 ± 0.347; P < 0.05) and fatigue (78.5% vs 33.3%; P < 0.05) were significantly relieved after adding FuXi-Tiandi-Wuxing Decoction to the existing treatment. Conclusion: An early treatment with combination therapy of FuXi-Tiandi-Wuxing Decoction and anti-viral drugs significantly relieves the clinical symptoms of NCP, shows improvement in chest CT scan, improves virological clearance, shortens average length of hospital stay, and reduces the risk of severe illness. The effect of FuXi-Tiandi-Wuxing Decoction in NCP may be clinically important and require further consideration.

16.
Biomolecules ; 13(1)2023 01 13.
Article in English | MEDLINE | ID: covidwho-2199743

ABSTRACT

Billions of years of co-evolution has made mitochondria central to the eukaryotic cell and organism life playing the role of cellular power plants, as indeed they are involved in most, if not all, important regulatory pathways. Neurological disorders depending on impaired mitochondrial function or homeostasis can be caused by the misregulation of "endogenous players", such as nuclear or cytoplasmic regulators, which have been treated elsewhere. In this review, we focus on how exogenous agents, i.e., viral pathogens, or unbalanced microbiota in the gut-brain axis can also endanger mitochondrial dynamics in the central nervous system (CNS). Neurotropic viruses such as Herpes, Rabies, West-Nile, and Polioviruses seem to hijack neuronal transport networks, commandeering the proteins that mitochondria typically use to move along neurites. However, several neurological complications are also associated to infections by pandemic viruses, such as Influenza A virus and SARS-CoV-2 coronavirus, representing a relevant risk associated to seasonal flu, coronavirus disease-19 (COVID-19) and "Long-COVID". Emerging evidence is depicting the gut microbiota as a source of signals, transmitted via sensory neurons innervating the gut, able to influence brain structure and function, including cognitive functions. Therefore, the direct connection between intestinal microbiota and mitochondrial functions might concur with the onset, progression, and severity of CNS diseases.


Subject(s)
COVID-19 , Central Nervous System Diseases , Gastrointestinal Microbiome , Humans , SARS-CoV-2 , Brain-Gut Axis , Mitochondria
17.
BIOpreparations. Prevention, Diagnosis, Treatment ; 22(2):170-186, 2022.
Article in Russian | EMBASE | ID: covidwho-2067593

ABSTRACT

The COVID-19 pandemic has exacerbated the public’s need for effective vaccines. Consequently, significant financial support has been provided to developers of a number of innovative vaccines, including the vaccines with saponin-based adjuvants. In 2021, the World Health Organisation recommended Mosquirix, the first malaria vaccine, which contains a saponin adjuvant. An anti-covid vaccine by Novavax is in the approval phase. A promising approach to vaccine development is presented by the use of virus-like immune-stimulating complexes (ISCOMs) containing saponins and by the creation of combinations of ISCOMs with antigens. The aim of the study was to develop, produce and characterise virus-like immune-stimulating complexes based on saponins of Quillaja saponaria, as well as similar saponins of Russian-sourced Polemonium caeruleum. Materials and methods: The ISCOM adjuvants, Matrix-BQ and Matrix-BP, were produced using liquid chromatography and examined using electron microscopy. Balb/c mice were immunised intraperitoneally and intramuscularly with ISCOM-antigen preparations. Afterwards, the immunised animals were challenged with the influenza virus strain, A/California/4/2009(H1N1)pdm09, adapted and lethal to mice. The serum samples were examined using haemagglutination inhibition (HI) tests. Results: The authors produced the ISCOMs containing saponins of Quillaja saponaria and Polemonium caeruleum. After one intramuscular injection of either of the ISCOM-antigen preparations with 1 µg of each of A/Brisbane/02/2018 (H1N1) pdm09, A/Kansas/14/2017 (H3N2), and B/Phuket/3073/2013 haemagglutinin antigens (HAs), HI tests detected serum antibody titres to the corresponding antigens of ≥1:40. Two intramuscular injections of the ISCOM-antigen preparation containing 50 ng of each of the HAs and Matrix-BQ resulted in a protective response. In some animals, two intraperitoneal injections of ISCOM-antigen preparations resulted in the maximum antibody titre to the A/Kansas/14/2017 (H3N2) vaccine strain of 1:20,480. Two intramuscular injections of a test preparation containing 5 µg, 1 µg, 200 ng, or 50 ng of each of the HAs and Matrix-BQ or a control preparation containing 5 µg, 1 µg, or 200 ng of each of the HAs (commercially available vaccines) to the mice that were afterwards infected with the lethal influenza strain protected the experimental animals from death. Conclusions: The ISCOM-based preparations had high immunostimulatory activity in the mouse-model study. The presented results indicate the potential of further studies of ISCOM-based preparations in terms of both vaccine and immunotherapeutic development.

18.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2066124

ABSTRACT

Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Neuraminidase , Peptides/pharmacology , Peptides/therapeutic use
19.
Viruses ; 14(10)2022 09 27.
Article in English | MEDLINE | ID: covidwho-2043991

ABSTRACT

Bovine coronavirus (BCoV) has spilled over to many species, including humans, where the host range variant coronavirus OC43 is endemic. The balance of the opposing activities of the surface spike (S) and hemagglutinin-esterase (HE) glycoproteins controls BCoV avidity, which is critical for interspecies transmission and host adaptation. Here, 78 genomes were sequenced directly from clinical samples collected between 2013 and 2022 from cattle in 12 states, primarily in the Midwestern U.S. Relatively little genetic diversity was observed, with genomes having >98% nucleotide identity. Eleven isolates collected between 2020 and 2022 from four states (Nebraska, Colorado, California, and Wisconsin) contained a 12 nucleotide insertion in the receptor-binding domain (RBD) of the HE gene similar to one recently reported in China, and a single genome from Nebraska collected in 2020 contained a novel 12 nucleotide deletion in the HE gene RBD. Isogenic HE proteins containing either the insertion or deletion in the HE RBD maintained esterase activity and could bind bovine submaxillary mucin, a substrate enriched in the receptor 9-O-acetylated-sialic acid, despite modeling that predicted structural changes in the HE R3 loop critical for receptor binding. The emergence of BCoV with structural variants in the RBD raises the possibility of further interspecies transmission.


Subject(s)
Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Humans , Cattle , Animals , Hemagglutinins/metabolism , N-Acetylneuraminic Acid/metabolism , Mutation , Glycoproteins/genetics , Esterases/genetics , Esterases/metabolism , Nucleotides/metabolism , Spike Glycoprotein, Coronavirus/genetics
20.
INTELLIGENT HEALTHCARE: Applications of AI in eHealth ; : 259-270, 2021.
Article in English | Web of Science | ID: covidwho-2012535
SELECTION OF CITATIONS
SEARCH DETAIL